GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons.

نویسندگان

  • Esther Pozas
  • Carlos F Ibáñez
چکیده

Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of GABAergic cells. These effects required GFRalpha1 but neither RET nor NCAM, the two transmembrane signaling receptors known for GDNF. Mutant mice lacking GDNF or GFRalpha1, but neither RET nor NCAM, showed reduced numbers of GABAergic cells in the cerebral cortex and hippocampus. We conclude that one of the normal functions of GDNF signaling via GFRalpha1 in the developing brain is to promote the differentiation and migration of cortical GABAergic neurons. The lack of involvement of RET or NCAM in these processes suggests the existence of additional transmembrane effectors for GDNF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GDNF and GFRα1 Promote Differentiation and Tangential Migration of Cortical GABAergic Neurons

Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFR 1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of ...

متن کامل

MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner.

GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migratio...

متن کامل

Identification of the key amino acids of glial cell line-derived neurotrophic factor family receptor alpha1 involved in its biological function.

Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neurodevelopment and survival of midbrain dopaminergic and spinal motor neurons in vitro and in vivo. The biological actions of GDNF are mediated by a two-receptor complex consisting of a glycosylphosphatidylinositol-linked cell surface molecule, the GDNF family receptor alpha1 (GFRalpha1), and receptor protein tyrosine...

متن کامل

Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth.

RET receptor signalling is essential for glial-cell-line-derived neurotrophic factor (GDNF)-induced survival and differentiation of various neurons such as mesencephalic neurons. To identify proteins that mediate RET-dependent signaling, yeast two-hybrid screening was performed with the intracellular domain of RET as bait. We identified a new interaction between RET and the adapter protein SH2-...

متن کامل

Novel functions and signalling pathways for GDNF.

Glial-cell-line-derived neurotrophic factor (GDNF) was originally identified as a survival factor for midbrain dopaminergic neurons. GDNF and related ligands, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), maintain several neuronal populations in the central nervous systems, including midbrain dopamine neurons and motoneurons. In addition, GDNF, NRTN and ARTN support the survival and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 45 5  شماره 

صفحات  -

تاریخ انتشار 2005